Advances in Therapeutic Radiology

The field of radiology continues to make gains in knowledge and technology. Newer methods are being tested to find better treatments for cancer and other conditions treated with radiation.

What are some types of advanced therapies?

Some newer radiation therapies are listed below.

Radiation and chemotherapy in combination

Radiation may improve how well chemotherapy works. In turn, chemotherapy may improve the effects of radiation. Procedures are being developed to find the most effective use of chemotherapy and radiation.

Intraoperative irradiation

This method uses external beam radiation therapy or other types of radiation during surgery to treat certain cancers. The benefit of this method is that less tissue is exposed to radiation. The target area can be directly looked at, and a more effective dose of radiation may be used. Intraoperative irradiation can improve cancer treatment in some cases when used along with surgery, external beam therapy, or chemotherapy.

Stereotactic irradiation (radiosurgery)

Stereotactic irradiation is the use of a single high dose of radiation. Radiation is sent into the diseased tissue with very narrow beams of radiation. The two main forms of stereotactic irradiation are linear acceleration and the gamma knife. This method reduces the length of hospital stays and lowers the costs for certain brain cancers and conditions.

Particle radiation therapy

Particle radiation therapy uses higher-energy radiation particles in cancer therapy. Types of radiation particles used in radiation therapy include neutrons, protons, ions, and antiprotons.
Proton therapy is the most widely used type of particle therapy. Fast neutron therapy may be used to treat certain inoperable or recurrent tumors. There are only a few centers in the U.S. that offer this treatment.
Antiproton therapy is the newest type of particle radiation therapy under study. It has promise for use in radiosurgery techniques.
Internal hadron therapy is another type of particle radiation therapy. One example of this type of therapy is boron neutron-capture therapy. A boron compound is given to the person by injection. The boron builds up in the tumor or cancerous tissue. A reaction occurs in the tumor when a beam of neutrons is sent into the tumor, destroying the cancer cells. The advantage of this method is that it can be used to treat widespread cancer.

3D conformal radiation therapy

Before the development of CT scans, it was difficult to exactly target a lesion or tumor for radiation therapy. CT provided a 2D means of viewing the treatment area. But a 3D view is needed to define all borders of the lesion or tumor for the most precise treatment planning.

Intensity-modulated radiation therapy (IMRT)

Similar to 3D conformal radiation therapy, intensity-modulated radiation therapy (IMRT) uses varying intensity within single radiation beams to minimize the amount of radiation to normal tissues around the area being treated.


Radioimmunotherapy uses antibodies "tagged" with a cancer-killing substance. These tagged antibodies recognize tumor cells and bind with them, thus bringing the cancer-killing medicine directly to the tumor tissue. The tagged antibodies may be given directly into an artery, under the skin, or directly into a body cavity such as the uterus.
One advantage of this method is that it may be used to treat cancer that has spread but can't been seen. This helps eliminate the spread of the disease.


Cyberknife is a non-invasive way to treat both cancer and non-cancerous tumors, as well as other health problems. It sends targeted, high-dose radiation to tumors, reducing exposure to the nearby healthy tissue. The components include a robotic arm and a tracking system that is used to reach tumors or problems in difficult regions and from any direction.

Treatment choices

The radiologist or radiation oncologist must have a high level of skill and additional training to do these procedures. Ask if the provider is certified. This can be by a professional group or a national board that oversees certification for the procedure. Before agreeing to treatment, consider asking the provider the following questions:

  • What is the treatment for?

  • Why do I need this particular treatment?

  • How many times have you done this treatment?  

  • Are there better alternatives?

  • What are the possible complications?

  • Which hospital or facility is best prepared to do this procedure?

  • Are there side effects?

  • Will this treatment interfere with medicines I am currently taking?

  • When will I get the results?

  • How much will it cost?

Answers to such questions can give you the information needed to make an informed choice about treatment choices.