BEACON EMR HIPAA Disclaimer Site Map Social Media
BayCare Health System
Community Benefit Financial Assistance Policy Quality Report Card Health Library News Doctor Connect Find Us
Services Hospitals Find A Doctor Classes & Events About Us Careers Contact Us Get E-Newsletter
HealthDay Articles & Information
 Back  Back


May We Help You?
 

Call 1-877-692-2922
Monday-Friday, 8am to 5pm

Persons with hearing and speech disabilities can reach the above number through TDD and other specialized equipment by calling the Florida Relay Service at 711.

Contact Us
Send 
e-mail
Search jobs


Decrease (-) Restore Default Increase (+) Font Size
Print    Email
Search Health Information   

Scientists Inch Closer to Genetic Blueprint of Diseases

Finding might change the way conditions are treated in the future

By Amanda Gardner
HealthDay Reporter

WEDNESDAY, Sept. 5 (HealthDay News) -- Scientists' understanding of what causes human disease -- genetically speaking -- just got a bit clearer and infinitely more complicated all at the same time.

A study appearing online Sept. 5 in the journal Science provides a blueprint not only of genes that are involved in different disorders, but also of the "switches" that control those genes and how these two elements interact.

The "map" could substantially alter how scientists approach the genetics of diseases and, eventually, how treatments and cures are devised, the researchers said.

"This is a paradigm shift in terms of how we look at the genetic basis for disease," said study senior author Dr. John Stamatoyannopoulos, an associate professor in the departments of genome sciences and medicine at the University of Washington in Seattle. "I think it's going to change considerably how people use the genome to identify targets for pharmaceuticals."

Previous genetics research had focused mainly on finding a specific gene or gene variant for a particular disease, the conventional wisdom being that specific variants in that gene would affect protein sequences, and the altered protein sequences would determine if a person was healthy or if he or she developed a disease.

The problem is that many of these studies fingered regions of the human genome that don't actually contain genes, Stamatoyannopoulos explained. In fact, genes constitute only 2 percent of the human genome.

"Hidden in the remaining 98 percent are instructions that basically tell the genes how to switch on and off," he explained.

Stamatoyannopoulos and his colleagues analyzed 349 tissue samples from adults, and then cross-referenced the results with existing genetic data on more than 400 diseases and physical traits, such as height.

The result: a clearer picture of what's inside that mysterious 98 percent of the genome.

The research revealed that, with diseases, "it's not necessarily the gene but probably a network of genes that are working together," and these "switches" or "regulatory" DNA orchestrate entire networks, Stamatoyannopoulos said.

The authors of an accompanying editorial agreed that the finding could shed light on disease mechanisms.

"Many of these variations in DNA that are associated with disease are not directly affecting protein sequences," explained Eric Schadt, co-author of the accompanying perspective and chairman of genetics and genomic sciences at Mount Sinai School of Medicine in New York City. "They are affecting regions in the DNA that regulate whether genes should be expressed or not, and at what level. They're playing more of a regulatory role versus a protein-function role. We are able to see that loud and clear in [this] data."

Three-quarters of the diseases studied had links to regulatory DNA, and many of these aberrations were already at work in the womb.

The researchers also found that many common diseases, such as Crohn's and lupus, that seem very different, may actually share some of the same regulatory genes.

With this new information, "we can start understanding not only what disease do you have but what subtype do you have, what pathways are affected and what treatments are most beneficial for those particular subtypes," said Schadt.

"This enables us to develop a more granular view of disease, of the processes underlying disease, and that is going to enable a personalized medicine sort of approach," he added.

More information

The Human Genome Project has more on human genetics.


SOURCES: John Stamatoyannopoulos, M.D., associate professor, departments of genome sciences and medicine, University of Washington, Seattle; Eric Schadt, Ph.D., chairman and professor, department of genetics and genomic sciences, Mount Sinai School of Medicine, New York City; Sept. 5, 2012, Science, online

Copyright © 2012 HealthDay. All rights reserved.


Serving The Tampa Bay Area © Copyright 2014 BayCare Health System